Modeling and μ-synthesis Based Robust Trajectory Tracking Control of a Wheeled Mobile Robot

نویسندگان

  • Zheyu Deng
  • Bin Yao
  • Xiaocong Zhu
  • Qingfeng Wang
  • Huayong Yang
چکیده

Performance of trajectory tracking is important for Wheeled Mobile Robots (WMR), which have wide applications in industry, medical treatment, and domestic service, etc. In this paper, comprehensive modeling of a WMR is presented with model parameters estimated via system identification. The influence on experimental frequency response due to friction disturbances at low frequency and modeling uncertainties at high frequency are carefully analyzed. To achieve higher trajectory-tracking performance, both the non-holonomic kinematic constraints and the dynamics of actual WMRs are taken into account, and a -synthesis based robust control method is presented to deal with the friction disturbances and the high-frequency modeling errors. Comparative experimental results are also obtained to verify the effectiveness of the proposed control strategy in actual implementation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot

Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...

متن کامل

Trajectory Tracking of Two-Wheeled Mobile Robots, Using LQR Optimal Control Method, Based On Computational Model of KHEPERA IV

This paper presents a model-based control design for trajectory tracking of two-wheeled mobile robots based on Linear Quadratic Regulator (LQR) optimal control. The model proposed in this article has been implemented on a computational model which is obtained from kinematic and dynamic relations of KHEPERA IV. The purpose of control is to track a predefined reference trajectory with the best po...

متن کامل

Adaptive Sliding Mode Tracking Control of Mobile Robot in Dynamic Environment Using Artificial Potential Fields

Solution to the safe and collision-free trajectory of the wheeled mobile robot in cluttered environments containing the static and/or dynamic obstacle has become a very popular and challenging research topic in the last decade. Notwithstanding of the amount of publications dealing with the different aspects of this field, the ongoing efforts to address the more effective and creative methods is...

متن کامل

Non-Singular Terminal Sliding Mode Control of a Nonholonomic Wheeled Mobile Robots Using Fuzzy Based Tyre Force Estimator

This paper, proposes a methodology to implement a suitable nonsingular terminal sliding mode controller associated with the output feedback control to achieve a successful trajectory tracking of a non-holonomic wheeled mobile robot in presence of longitudinal and lateral slip accompanied. This implementation offers a relatively faster and high precision tracking performance. We investigate this...

متن کامل

Trajectory Tracking Weeled Mobile Robot Using Backstepping Method with Connection off Axle Trailer

The connection of the tractor to the inactive trailer or motor vehicle causes a motion control problem when turning in the screw, forward or backward movements and high speeds. This is due to the inactive trailer being controlled by the tracking using a physical link that is not affected by the movement. Trailers usually take tracks under these conditions. This phenomenon is called Jack Knife. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014